Horizontal tangent line	Words that indicate derivative/ differentiation	$\frac{d}{dx}[\cos x]$
Definition of the derivative	$\frac{d}{dx}[\tan x]$	Equation of tangent line at x = a
Situations in which limits fail to exist	Horizontal asymptote	Words that indicate second derivative
$\frac{d}{dx}[\sec x]$	Definition of continuity at x = a	$\frac{d}{dx}[\sin x]$
$\frac{d}{dx}[\cot x]$	$\frac{d}{dx}[\csc x]$	Vertical asymptote at x = a

$-\sin x$	Slope equation of tangent line; rate; velocity; increasing/ decreasing	Where $f'(x) = 0$
y - f(a) = f'(a)(x - a)	$\sec^2 x$	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$
Concavity; Point of inflection; Acceleration	$y = \lim_{x \to \pm \infty} f(x)$	 a) unbounded behavior (vertical asymptote) b) behavior that differs from left and right (gap) c) oscillation
COS X	$\lim_{x \to a} f(x) \text{ exists}$ $f(a) \text{ exists}$ $\lim_{x \to a} f(x) = f(a)$	sec x tan x
$\lim_{x\to a} f(x) = \pm \infty$	$-\csc x \cot x$	$-\csc^2 x$