Advanced Placement Biology Course

Dalian Maple Leaf International School AP Biology Course Outline

Introduction to Advanced Placement

The Advanced Placement Program will allow students to take college-level courses and earn college credit, advanced placement, or both, while still in high school. Students who earn a qualifying score on an AP Exam are typically eligible to receive college credit and/or placement into advanced courses in college.

Advanced Placement (AP) Biology : Course Description

AP Biology is a year-long course designed for high school students as an opportunity to earn AP credit on their high school transcript, as well as placement credit for an introductory college-level science course.

Students who earn a qualifying score on the AP Biology Exam are typically eligible to receive college credit and placement in an advanced science course in college.

This course is aligned to the College Board AP Biology Curriculum Framework and is based on four Big Ideas, which encompass core scientific principles, theories, and processes that cut across traditional boundaries and provide a broad way of thinking about living organisms and biological systems.

Twenty-five percent of instructional time is devoted to hands-on laboratory work with an emphasis on inquirybased investigations. Investigations require students to ask questions, make observations and predictions, design experiments, analyze data, and construct arguments in a collaborative setting, where they direct and monitor their progress. This course is designed to prepare students for the Biology College Board Advanced Placement Exam.

Assessment	
In Class Assessment	AP Exam (3 hour terminal exam in May)
Exam 50%	Section 1 (1.5 Hours) Multiple Choice
Quizzes/Assignments/Readings/Research 25%	Section 2 (1.5 Hours) Short and long free response
Labs 25%	

Advanced Placement Biology Course

Topics for the Course

The AP Biology Curriculum is framed around four Big Ideas. For each of these Big Ideas, there is a set of core concepts called Enduring Understanding, which will be used to guide the AP Biology course curriculum. Below is an outline of the AP Biology Curriculum Big Ideas and the Enduring Understandings topics covered in this course.

Big Ideas	Enduring Understanding
Unit One	A. Change in the genetic makeup of a population
The process of evolution drives the diversity and unity	over time is evolution.
of life.	B. Organisms are linked by lines of descent from
	common ancestry.
	C. Life continues to evolve within a changing
	environment.
	D. The origin of living systems is explained by
	natural processes
Unit Two	A. Growth, reproduction, and maintenance of the
Biological systems utilize energy and molecular	organization of living systems require free
building blocks to grow, reproduce, and maintain	energy and matter.
homeostasis.	B. Growth, reproduction, and dynamic homeostasis
	require that cells create and maintain internal
	environments that are different from their
	external environments.
	C. Organisms use recuback mechanisms to regulate
	growin and reproduction, and to maintain
	D Growth and dynamic homoostasis of a
	biological system are influenced by changes in
	the system's environment E. Many biological
	processes involved in growth reproduction and
	dynamic homeostasis include temporal
	regulation and coordination
Unit Three	A. Heritable information provides for continuity of
Living systems retrieve, transmit, and respond to	life.
information essential to life processes.	B. Expression of genetic information involves
*	cellular and molecular mechanisms.
	C. The processing of genetic information is
	imperfect and is a source of genetic variation.
	D. Cells communicate by generating, transmitting,
	and receiving chemical signals.
	E. Transmission of information results in changes
	within and between biological systems.
Unit Four	A. Interactions within biological systems lead to
Biological systems interact and these interactions	complex properties.
possess complex properties	B. Competition and cooperation are important
	aspects of biological systems.
	C. Naturally occurring diversity among and
	between components within biological systems
	affects interactions with the environment.

Advanced Placement Biology Course

Laboratory Practical Component

The laboratory experience is extremely important in the AP Biology course and is used to emphasize that biology and science is a process, which involves development and testing of a hypothesis, collection, analysis, and presentation of data with a clear discussion of the results.

The topics covered in these labs will be

 Investigation 1: Artificial Selection

 Investigation 2: Mathematical Modeling; Hardy-Weinberg

 Investigation 3: Comparing DNA Sequences to Understand Evolutionary Relationship with BLAST

 Investigation 4: Diffusion and Osmosis

 Investigation 5: Photosynthesis

 Investigation 6: Cellular Respiration

 Investigation 7: Cell Division: Mitosis and Meiosis

 Investigation 8: Biotechnology: Bacterial Transformation

 Investigation 9: Biotechnology: Restriction Enzyme Analysis

 Investigation 10: Energy Dynamics

 Investigation 12: Fruit Fly Behavior

 Investigation 13: Enzyme Activity