
The physics of Angry

Birds: how it works
How Rovio wrote such realistic

interactions into the game
By PC Plus March 10, 2012

Applications

Angry Birds: velocity & distance
We're sure, without a doubt, that you know Angry Birds. We're equally sure that

you've played it - it's available for purchase on innumerable device platforms,

and even for free on Google Chrome and Android, albeit with annoying ads.

And we're pretty certain you're better at it than we are.

Just in case, the basic plot of the game is to knock out a bunch of green pigs by

firing flightless birds at them from a catapult.

The birds are angry because the pigs have stolen their eggs, and the pigs are

trying to protect themselves by hiding in some remarkably ramshackle structures

made of wood, glass, or rock. And that's it really.

Put baldly like that it doesn't seem like much, but in reality it's quite addictive. I

think that part of the reason for its addictiveness is that the launching and the

flight of the birds seems very natural, the collisions authentic, and the

wobbliness of the pigs' constructions real. In other words, the game jives with

our knowledge of how the real world works, and so we use our experience of

throwing balls and stones to work out how the birds will fly as they're launched

from the catapult.

We make judgments about how the momentum of the red bird will be transferred

to the planks and sheets of glass from our familiarity with colliding snooker

balls.

Exploring velocity
So how did the developers at Rovio, the company that produces Angry Birds,

write such realistic interactions into the game?

It all boils down to some fairly simple algorithms. Let's first take a look at the

flight of the red bird (to recap, the red bird acts like a cannon ball: it flies and

then crashes into something). We'll take it from the point the bird leaves the

catapult: it has a certain velocity at a certain angle. What happens next?

There are two components to the velocity: the vertical and the horizontal. The

horizontal component is constant; there are no forces acting on the red bird

horizontally (I'm sure that Rovio's programmers ignored the friction due to air

resistance).

The vertical component on the other hand is subject to the acceleration due to

gravity, g, continually pulling the bird down to Earth. Let's assume that g is

roughly 10 meters per second squared, as it is at ground level.

If we say that the vertical velocity is v m/s upwards at the point of launch, then a

short time later - let's say 1/10 of a second - the vertical velocity will be (v-1)

m/s. (In other words, the reduction in velocity is 1/10 of 10 m/sˆ2.) Another 1/10

of a second later the vertical velocity will be (v-2) m/s, and so on.

At some point, gravity will slow down the vertical velocity to zero, after which

point, the vertical velocity becomes negative (in other words, the red bird will

accelerate downwards - we defined v to be a velocity upwards). So, in short, the

vertical velocity of the red bird will decrease from v to 0 upwards, and then

increase from 0 downwards.

The theory of kinematics provides the formula w = v + at for the velocity w at a

time t given a constant acceleration a and an initial velocity v.

Go the distance
Now that we understand how the velocity changes with time, what about the

distance travelled? Again we have two components: the vertical and the

horizontal distance.

The horizontal distance is easy; the distance travelled horizontally is simply the

constant horizontal speed component multiplied by the time. Vertically, there are

a couple of ways we can simulate this: a step-wise algorithm, or by using the

relevant kinematics formula.

Since we're emulating reality on a fairly small screen, the step-wise algorithm

will work perfectly well. After all, we're going to be displaying the red bird on

the screen at one position and then a very short time later at another to give the

illusion of motion.

http://www.techradar.com/us/author/pc-plus
http://www.techradar.com/us/news/software/applications

Let's assume that our 'steps' are 1/10 second apart again, and g has the same

value. We'll make the assumption also that the speed at the start of a step is

maintained throughout the step (in reality we know that this is an approximation

- the speed changes continuously).

Using these assumptions, the distance travelled upwards in the first step is

v*1/10, in the second (v-1)*1/10, the third (v-2)*1/10, and so on. Eventually the

distance travelled goes negative, in other words, downwards.

Now that we have calculated the distance travelled both vertically and

horizontally for each step, we can plot this on the Angry Birds screen and see the

parabola we'd expect for the path travelled by the red bird. In fact, the way Rovio

displays the parabolic path uses little puffs of 'smoke' at regular intervals as if

they were calculating the path in this step-wise manner.

Figure 1 (to the right)

shows this

conceptually. In the

lower left corner I

show the initial

components of the

velocity in red: a large

vertical component

(subject to gravity)

and a smaller

horizontal one (at the

start it's roughly in the

ratio 3:1). The grid

spacing represents the

distance travelled

horizontally in 1/10

second (you can see

that the yellow dots

are spaced equally

from left to right).

As you can see, the vertical distance travelled gets shorter and shorter upwards

every time slice until we reach the top, and then it gets longer and longer

downwards. The segments between the yellow dots are all straight; I did not

attempt to apply a curve.

For completeness, I'll add the formula from the theory of kinematics to calculate

the position q at time t: q = p + v*t + 0.5*a*tˆ2, where p is the initial position, v

the initial velocity, and a the constant acceleration. As you can see, this is a

quadratic formula in t; that is, a parabolic path.

Angry Birds: stretching and collisions

Stretch of imagination
Let's now take a look at that catapult. It's an elastic cord and the further we pull

it, the more tension is applied, and the more rapid the acceleration when we let

go and the cord snaps back. This in turn imparts the initial velocity to the bird

once the acceleration due to the tension is dissipated. In essence, the further back

we pull the cord the greater the initial velocity.

We could simulate the cord snapping back to rest. The relevant pieces are

Hooke's law: the force exerted from the stretched cord is proportional to the

stretched length, and Newton gave us F=ma, or the force is equal to mass times

the acceleration.

In reality though, the player wouldn't be able to see anything - the action is over

so quickly. It's easier from a programmer's point of view to code up a simple

formula: the initial velocity is equal to the length of the stretched cord times

some constant. Work out a good value for the constant through experimentation

and move on to the next problem to simulate.

I would guess that the game player will always apply the maximum stretch to get

the maximum initial velocity - this will provide the maximum damage to the

pigs' edifices on contact.

Collision physics
Since we're talking about what happens on contact, we should take a look at the

physics of collisions. Here our old friend Isaac Newton is the master.

There are two parts to collisions when simulating them in a game on a computer.

The first is how to detect a collision between two objects. This, to put it bluntly,

is hard.

In Angry Birds, all collisions are between a moving object and a stationary one,

the easiest case to simulate. Furthermore, I'm going to postulate that the reason

nearly all the birds are circular is that it makes it a bit easier to detect a possible

collision. Rather than provide a detailed discussion here of what's required to

detect a collision, I'll just illustrate the problems.

First of all, the objects have a center of mass, and it is the center of mass that

describes the path that the object takes. The object has a shape that extends

around that center of mass: to detect a collision you have to track the shape as

the center of mass moves along its trajectory.

The easiest shape to track is a circle, and it's probably easiest to just track the

portion of the object in front. If you play a lot of Angry Birds, you'll have

noticed that the game doesn't track the extremities perpendicular to the line of

flight very well - some birds will fly close enough to an object to hit it, but will

continue onwards without contact or deflection.

The second part of a collision is what happens because of the collision. This is

known as the collision response. Here again we makes use of some simplifying

assumptions.

The first assumption is that the objects colliding are treated as being rigid. What

this means is that we assume that the objects do not deform when they collide.

The reason for this is to avoid all those tricky calculations about how much

collision energy could be absorbed by something crumpling or denting or

compressing. In other words, the collisions in the game are not like crashing

your car into a wall, but are instead similar to two snooker balls colliding.

There is a fundamental principle at play here: Newton's law of the conservation

of momentum. What this says in essence is that the sum of the momentums of

both objects just before they collide is equal to the sum of the momentums just

after.

For this law to apply, the momentum is assumed to be a vector - that is, the

momentum has a direction as well as a magnitude (if you think about it, velocity

is a vector as well, as is acceleration). The momentum of an object is its velocity

multiplied by its mass.

This is now where we fudge things a little in the game. For a rigid body to

collide with another, there's going to be a change of direction for both of them.

Their velocities will change. In order to change a velocity we have to apply an

acceleration, which in turn implies that a force has to be applied over a period of

time. But, since 'rigid' implies 'non-deformable' we have no time. The change in

velocity is immediate.

To counter this problem we use a new quantity called the impulse. This is

equivalent to a very large force applied over a very small time, and is essentially

a way for us to get around the idealization of a rigid body. (Think about what

happens at the atomic level when two snooker balls collide: there is some

complicated interaction between the various electric fields of the atoms of the

two balls to cause a repulsive force. Just because we want a perfect rigid ball

doesn't mean that it actually is.)

We can then calculate the impulses at the collision point and apply them to

change the two bodies' velocities without them deforming.

Act on impulse
The way to calculate the impulses is determined by the realism you want to

achieve. The simplest model to use is known as Newton's Law of Restitution.

Here we postulate a coefficient of restitution that models the elasticity of the

collision and defines the relation between the incoming and outgoing velocities

or the amount of energy absorbed by the collision.

A perfect elastic collision has a value of one and describes the collision between

two perfect snooker balls. A perfect inelastic collision has a value of zero and

basically describes the collision between a lump of wet clay and a wooden floor:

splat.

Without going into detail, you have to calculate the perpendicular to the point of

collision, the normal. It's along this line the collision occurs, and with Angry

Birds we’re generally talking about a circle - the bird - hitting a straight edge -

the plank, sheet of glass, and so on. The normal is perpendicular to the straight

edge.

Using some relatively straightforward mathematics, we can work out the relative

velocities along the normal, the impulses that apply, and hence the new relative

velocities after the collision.

Figure 2 shows a stylized view of a collision between a red bird and a plank of

wood. This example also shows that the momentum transferred to the wood can

also cause a rotation, creating angular momentum as well.

Angry Birds does fudge some of this detail to a certain extent: there are

explosions, smashings, bonus points, clouds of feathers and the like, all of which

help to disguise the somewhat unrealistic collisions.

All in all though, Angry Birds is an excellent example of how to use physics to

produce realistic and engaging two-dimensional gameplay.

