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Applications  

Angry Birds: velocity & distance 
We're sure, without a doubt, that you know Angry Birds. We're equally sure that 

you've played it - it's available for purchase on innumerable device platforms, 

and even for free on Google Chrome and Android, albeit with annoying ads. 

 

And we're pretty certain you're better at it than we are. 

 

Just in case, the basic plot of the game is to knock out a bunch of green pigs by 

firing flightless birds at them from a catapult. 

 

The birds are angry because the pigs have stolen their eggs, and the pigs are 

trying to protect themselves by hiding in some remarkably ramshackle structures 

made of wood, glass, or rock. And that's it really. 

 

Put baldly like that it doesn't seem like much, but in reality it's quite addictive. I 

think that part of the reason for its addictiveness is that the launching and the 

flight of the birds seems very natural, the collisions authentic, and the 

wobbliness of the pigs' constructions real. In other words, the game jives with 

our knowledge of how the real world works, and so we use our experience of 

throwing balls and stones to work out how the birds will fly as they're launched 

from the catapult. 

 

We make judgments about how the momentum of the red bird will be transferred 

to the planks and sheets of glass from our familiarity with colliding snooker 

balls. 

 

Exploring velocity 
So how did the developers at Rovio, the company that produces Angry Birds, 

write such realistic interactions into the game? 

 

It all boils down to some fairly simple algorithms. Let's first take a look at the 

flight of the red bird (to recap, the red bird acts like a cannon ball: it flies and 

then crashes into something). We'll take it from the point the bird leaves the 

catapult: it has a certain velocity at a certain angle. What happens next? 

 

There are two components to the velocity: the vertical and the horizontal. The 

horizontal component is constant; there are no forces acting on the red bird 

horizontally (I'm sure that Rovio's programmers ignored the friction due to air 

resistance). 

 

The vertical component on the other hand is subject to the acceleration due to 

gravity, g, continually pulling the bird down to Earth. Let's assume that g is 

roughly 10 meters per second squared, as it is at ground level. 

 

If we say that the vertical velocity is v m/s upwards at the point of launch, then a 

short time later - let's say 1/10 of a second - the vertical velocity will be (v-1) 

m/s. (In other words, the reduction in velocity is 1/10 of 10 m/sˆ2.) Another 1/10 

of a second later the vertical velocity will be (v-2) m/s, and so on. 

 

At some point, gravity will slow down the vertical velocity to zero, after which 

point, the vertical velocity becomes negative (in other words, the red bird will 

accelerate downwards - we defined v to be a velocity upwards). So, in short, the 

vertical velocity of the red bird will decrease from v to 0 upwards, and then 

increase from 0 downwards. 

 

The theory of kinematics provides the formula w = v + at for the velocity w at a 

time t given a constant acceleration a and an initial velocity v. 

 

Go the distance 
Now that we understand how the velocity changes with time, what about the 

distance travelled? Again we have two components: the vertical and the 

horizontal distance. 

 

The horizontal distance is easy; the distance travelled horizontally is simply the 

constant horizontal speed component multiplied by the time. Vertically, there are 

a couple of ways we can simulate this: a step-wise algorithm, or by using the 

relevant kinematics formula. 

 

Since we're emulating reality on a fairly small screen, the step-wise algorithm 

will work perfectly well. After all, we're going to be displaying the red bird on 

the screen at one position and then a very short time later at another to give the 

illusion of motion. 
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Let's assume that our 'steps' are 1/10 second apart again, and g has the same 

value. We'll make the assumption also that the speed at the start of a step is 

maintained throughout the step (in reality we know that this is an approximation 

- the speed changes continuously). 

 

Using these assumptions, the distance travelled upwards in the first step is 

v*1/10, in the second (v-1)*1/10, the third (v-2)*1/10, and so on. Eventually the 

distance travelled goes negative, in other words, downwards. 

 

Now that we have calculated the distance travelled both vertically and 

horizontally for each step, we can plot this on the Angry Birds screen and see the 

parabola we'd expect for the path travelled by the red bird. In fact, the way Rovio 

displays the parabolic path uses little puffs of 'smoke' at regular intervals as if 

they were calculating the path in this step-wise manner. 

 

Figure 1 (to the right) 

shows this 

conceptually. In the 

lower left corner I 

show the initial 

components of the 

velocity in red: a large 

vertical component 

(subject to gravity) 

and a smaller 

horizontal one (at the 

start it's roughly in the 

ratio 3:1). The grid 

spacing represents the 

distance travelled 

horizontally in 1/10 

second (you can see 

that the yellow dots 

are spaced equally 

from left to right). 

 

As you can see, the vertical distance travelled gets shorter and shorter upwards 

every time slice until we reach the top, and then it gets longer and longer 

downwards. The segments between the yellow dots are all straight; I did not 

attempt to apply a curve. 

 

For completeness, I'll add the formula from the theory of kinematics to calculate 

the position q at time t: q = p + v*t + 0.5*a*tˆ2, where p is the initial position, v 

the initial velocity, and a the constant acceleration. As you can see, this is a 

quadratic formula in t; that is, a parabolic path. 

 

Angry Birds: stretching and collisions 

Stretch of imagination 
Let's now take a look at that catapult. It's an elastic cord and the further we pull 

it, the more tension is applied, and the more rapid the acceleration when we let 

go and the cord snaps back. This in turn imparts the initial velocity to the bird 

once the acceleration due to the tension is dissipated. In essence, the further back 

we pull the cord the greater the initial velocity. 

 

We could simulate the cord snapping back to rest. The relevant pieces are 

Hooke's law: the force exerted from the stretched cord is proportional to the 

stretched length, and Newton gave us F=ma, or the force is equal to mass times 

the acceleration. 

 

In reality though, the player wouldn't be able to see anything - the action is over 

so quickly. It's easier from a programmer's point of view to code up a simple 

formula: the initial velocity is equal to the length of the stretched cord times 

some constant. Work out a good value for the constant through experimentation 

and move on to the next problem to simulate. 

 

I would guess that the game player will always apply the maximum stretch to get 

the maximum initial velocity - this will provide the maximum damage to the 

pigs' edifices on contact. 

 

Collision physics 
Since we're talking about what happens on contact, we should take a look at the 

physics of collisions. Here our old friend Isaac Newton is the master. 

 

There are two parts to collisions when simulating them in a game on a computer. 

The first is how to detect a collision between two objects. This, to put it bluntly, 

is hard. 

 

In Angry Birds, all collisions are between a moving object and a stationary one, 

the easiest case to simulate. Furthermore, I'm going to postulate that the reason 

nearly all the birds are circular is that it makes it a bit easier to detect a possible 

collision. Rather than provide a detailed discussion here of what's required to 

detect a collision, I'll just illustrate the problems. 

 

First of all, the objects have a center of mass, and it is the center of mass that 

describes the path that the object takes. The object has a shape that extends 



around that center of mass: to detect a collision you have to track the shape as 

the center of mass moves along its trajectory. 

 

The easiest shape to track is a circle, and it's probably easiest to just track the 

portion of the object in front. If you play a lot of Angry Birds, you'll have 

noticed that the game doesn't track the extremities perpendicular to the line of 

flight very well - some birds will fly close enough to an object to hit it, but will 

continue onwards without contact or deflection. 

 

The second part of a collision is what happens because of the collision. This is 

known as the collision response. Here again we makes use of some simplifying 

assumptions. 

 

The first assumption is that the objects colliding are treated as being rigid. What 

this means is that we assume that the objects do not deform when they collide. 

 

The reason for this is to avoid all those tricky calculations about how much 

collision energy could be absorbed by something crumpling or denting or 

compressing. In other words, the collisions in the game are not like crashing 

your car into a wall, but are instead similar to two snooker balls colliding. 

 

There is a fundamental principle at play here: Newton's law of the conservation 

of momentum. What this says in essence is that the sum of the momentums of 

both objects just before they collide is equal to the sum of the momentums just 

after. 

 

For this law to apply, the momentum is assumed to be a vector - that is, the 

momentum has a direction as well as a magnitude (if you think about it, velocity 

is a vector as well, as is acceleration). The momentum of an object is its velocity 

multiplied by its mass. 

 

This is now where we fudge things a little in the game. For a rigid body to 

collide with another, there's going to be a change of direction for both of them. 

Their velocities will change. In order to change a velocity we have to apply an 

acceleration, which in turn implies that a force has to be applied over a period of 

time. But, since 'rigid' implies 'non-deformable' we have no time. The change in 

velocity is immediate. 

 

To counter this problem we use a new quantity called the impulse. This is 

equivalent to a very large force applied over a very small time, and is essentially 

a way for us to get around the idealization of a rigid body. (Think about what 

happens at the atomic level when two snooker balls collide: there is some 

complicated interaction between the various electric fields of the atoms of the 

two balls to cause a repulsive force. Just because we want a perfect rigid ball 

doesn't mean that it actually is.) 
 

We can then calculate the impulses at the collision point and apply them to 

change the two bodies' velocities without them deforming. 
 

Act on impulse 
The way to calculate the impulses is determined by the realism you want to 

achieve. The simplest model to use is known as Newton's Law of Restitution. 
 

Here we postulate a coefficient of restitution that models the elasticity of the 

collision and defines the relation between the incoming and outgoing velocities 

or the amount of energy absorbed by the collision. 
 

A perfect elastic collision has a value of one and describes the collision between 

two perfect snooker balls. A perfect inelastic collision has a value of zero and 

basically describes the collision between a lump of wet clay and a wooden floor: 

splat. 
 

Without going into detail, you have to calculate the perpendicular to the point of 

collision, the normal. It's along this line the collision occurs, and with Angry 

Birds we’re generally talking about a circle - the bird - hitting a straight edge - 

the plank, sheet of glass, and so on. The normal is perpendicular to the straight 

edge. 
 

Using some relatively straightforward mathematics, we can work out the relative 

velocities along the normal, the impulses that apply, and hence the new relative 

velocities after the collision. 

Figure 2 shows a stylized view of a collision between a red bird and a plank of 

wood. This example also shows that the momentum transferred to the wood can 

also cause a rotation, creating angular momentum as well. 
 

Angry Birds does fudge some of this detail to a certain extent: there are 

explosions, smashings, bonus points, clouds of feathers and the like, all of which 

help to disguise the somewhat unrealistic collisions. 
 

All in all though, Angry Birds is an excellent example of how to use physics to 

produce realistic and engaging two-dimensional gameplay. 


