

Activation Energy • Enzymes A how a rxn proceeds • Activation NRG Makes it go faster

Enzymes

 Typically very large proteins
 Are very specific – reacts with 1 or only a few types of molecules (substrates)

Active Sites

Enzymes use weak bonds to hold the molecule in place

Enzymes

Biological catalysts Allows rxns to "go" at certain conditions Can process millions of molecules each sec.

Active Sites

- Twisted protein structure gives the enzyme places for bonding.
- Sites are pockets or "clefts" on the enzyme surface

Active Sites

• <u>Binding site</u>: The area that holds the substrate in place • <u>Catalytic site</u>: where the rxn actually occurs

RACE-RECT.

Enzyme-Substrate Rxn

4. Product is made & the enzyme is ready for another substrate

Characteristics of Enzyme Active Sites

Induced Fit Model
 1958 by Daniel Koshland
 Enzyme is flexible
 Enzyme changes to fit the substrate

Enzyme-Substrate Rxn

2. Transition State (an intermediate molecule is formed)

Characteristics of Enzyme Active Sites

Lock & Key Model 1890 by Emil Fisher Only a substrate with the proper shape can fit with the enzyme.

RACE-SCOL.

Cofactors & Coenzymes

• Some enzymes require a 2nd molecule to help out

Enzyme Regulation

• Temperature, pH & cofactors help to regulate enzymes pH changes & increasing temp always affect rxn rates

Enzyme Regulation • Examples of optimum pH		
Enzyme	Source	Optimum pH
Pepsin	Gastric mucus	1.5
Sucrase	Intestine	6.2
Catalase	Liver	7.3
Alkaline phosphatase	Bone	9.5

Cofactors & Coenzymes

• Vitamins are often converted to coenzymes • Examples: B₁, B₂, Folic Acid

