- **39.** 1. △*ABC* ≅ ∠*CBA* (Given)
 - 2. $\overline{AB} \cong \overline{CB}$ (CPCTC)
 - 3. $\triangle ABC$ (Def. of Isosc. ρ)
- **40.** Two sides of a \triangle are \cong if and only if the & opp. those sides are \cong .

41.	Statements	Reasons
	1. $\triangle ABC$ and $\triangle DEF$	1. Given
	2. Draw \overrightarrow{EF} so that $FG = CB$.	2. Through any 2 pts. there is exactly 1 line.
	$3.\overline{FG}\cong\overline{CB}$	 Def. of ≅ segs.
	$4. \overline{AC} \cong \overline{DF}$	4. Given
	5. ∠ C , ∠ F are rt. $\&$.	5. Given
	6. $\overline{DF} \perp \overline{EG}$	6. Def. of ⊥ lines
	7. ∠DFG is rt. ∠	7. Def. of rt. ∠
	8. $\angle DFG \cong \angle C$	8. Rt. $\angle \cong$ Thm.
	9. \triangle <i>ABC</i> \cong \triangle <i>DGF</i>	9. SAS Steps 3, 8, 4
	10. $\overline{DG} \cong \overline{AB}$	10. CPCTC
	11. $\overline{AB} \cong \overline{DE}$	11. Given
	12. $\overline{DG} \cong \overline{DE}$	12. Trans. Prop. of \cong
	13. $\angle G \cong \angle E$	13. Isosc. △ Thm.
	14. ∠ $DFG \cong \angle DFE$	14. Rt. \angle ≅ Thm.
	15. $\triangle DGF \cong \triangle DEF$	15. AAS Steps 13, 14, 12
	16. $\triangle ABC \cong \triangle DEF$	16. Trans. Prop. of ≅

42. A

 $\begin{array}{c} \text{m} \angle \textit{VUT} = \text{m} \angle \textit{VTU} \\ 2\text{m} \angle \textit{VUT} + \text{m} \angle \textit{VTU} + \text{m} \angle \textit{TUV} = 180 \\ 2\text{m} \angle \textit{VUT} + 20 = 180 \\ \text{m} \angle \textit{VUT} = 80^{\circ} \\ \text{m} \angle \textit{VUR} + \text{m} \angle \textit{VUT} = 90 \end{array}$

 $m \angle VUR + m \angle VUT = 90$ $m \angle VUR + 80 = 90$ $m \angle VUR = 10^{\circ}$

43. H y + 10 = 3y - 5

$$6t - 9 + 4t + 4t = 180$$
$$14t = 189$$
$$t = 13.5$$

$y = 7\frac{1}{2}$ CHALLENGE AND EXTEND

15 = 2y

45. It is given that $\overline{JK} \cong \overline{JL}$, $\overline{KM} \cong \overline{KL}$, and $m \angle J = x^{\circ}$. By the \triangle Sum Thm.,

m $\angle JKL + m\angle JLK + x^{\circ} = 180^{\circ}$. By the Isosc. \triangle Thm., m $\angle JKL = m\angle JLK$. So $2(m\angle JLK) + x^{\circ} = 180^{\circ}$. or m $\angle JLK = \left(\frac{180 - x}{2}\right)^{\circ}$. Since m $\angle KML = m\angle JLK$,

 $m\angle KML = \left(\frac{180 - x}{2}\right)^{\circ}$ by the Isosc. \triangle Thm. By the \triangle Sum Thm., $m\angle MKL + m\angle JLK + m\angle KML = 180^{\circ}$

or $m \angle MKL = 180^{\circ} - \left(\frac{180 - x}{2}\right)^{\circ} - \left(\frac{180 - x}{2}\right)^{\circ}$. Simplifying gives $m \angle MKL = x^{\circ}$.

46. Let
$$A = (x, y)$$
.
 $4a^2 = AB^2$
 $= x^2 + y^2$
 $= AC^2$
 $= (x - 2a)^2 + y^2$
 $= x^2 - 4ax + 4a^2 + y^2$
 $= 4a^2 - 4ax + 4a^2$
 $4ax = 4a^2$
 $x = a$
 $y = \pm \sqrt{4a^2 - x^2}$
 $= \pm a\sqrt{3}$
 $(x, y) = (a, a\sqrt{3})$

47. (2a, 0), (0, 2b), or any pt. on the \perp bisector of \overline{AB} .

SPIRAL REVIEW

50.
$$x^2 - 2x + 1 = 0$$

 $(x - 1)(x - 1) = 0$
 $x = 1$

$$51. m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$= \frac{5 - (-1)}{0 - 2}$$

$$= \frac{6}{-2} = -3$$

52.
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
 53. $m = \frac{y_2 - y_1}{x_2 - x_1}$
$$= \frac{-10 - (-10)}{20 - (-5)} = 0$$

$$= \frac{11 - 7}{10 - 4}$$

$$= \frac{4}{6} = \frac{2}{2}$$

54. Possible answer:

#1,3,4,8-12

READY TO GO ON? PAGE 281

1. It is given that $\overline{AC} \cong \overline{BC}$, and $\overline{DC} \cong \overline{DC}$ by Reflex. Prop. of \cong . By the Rt. $\angle \cong$ Thm., $\angle ACD \cong \angle BCD$. Therefore, $\triangle ACD \cong \triangle BCD$ by SAS.

2.	Statements	Reasons
	1. JK bisects ∠MJN.	1. Given
	$2. \angle MJK \cong \angle NJK$	2. Def. of ∠ bisector
	3. $\overline{MJ} \cong \overline{NJ}$	3. Given
	$4. \overline{JK} \cong \overline{JK}$	4. Reflex. Prop of ≅
	$5. \triangle MJK \cong \triangle NJK$	5. SAS Steps 3, 2, 4

3. Yes, since $\overline{SU} \cong \overline{US}$.

89

- 4. No; need $\overline{AC} \cong \overline{DB}$.
- 5. 5 K 32° 13°
- Yes; the △ is uniquely determined by ASA.

7.	Statements	Reasons
	1. $\overline{CD} \parallel \overline{BE}$ and $\overline{DE} \parallel \overline{CB}$	1. Given
	2. ∠DEC ≅ ∠BCE and ∠DCE ≅ ∠BEC	2. Alt. Int. & Thm.
	3. $\overline{CE} \cong \overline{EC}$	3. Reflex. Prop of ≅
	$4. \triangle DEC \cong \triangle BCE$	4. ASA Steps 2, 3
	5. ∠D ≅ ∠B	5. CPCTC

- 8. Check students' drawings; possible answer: vertices at (0, 0), (9, 0), (9, 9), and (0, 9).
- 9. It is given that ABCD is a rect. M is the mdpt. of \overline{AB} , and N is the mdpt. of \overline{AD} . Use coords. A(0, 0), B(2a, 0), C(2a, 2b), and D(0, 2b). By Mdpt. Formula, coords. of M are $\left(\frac{0+2a}{2}, \frac{0+0}{2}\right) = (a, 0)$, and coords. of N are $\left(\frac{0+0}{2}, \frac{0+2b}{2}\right) = (0, b)$. Area of rect. $ABCD = \ell w = (2a)(2b) = 4ab$. Area of $\triangle AMN = \frac{1}{2}bh = \frac{1}{2}ab$, which is $\frac{1}{8}$ the area of rect. ABCD.
- 10. $m\angle E = m\angle D = 2x^{\circ}$ $m\angle C + m\angle D + m\angle E = 180$ 5x + 2x + 2x = 180 9x = 180x = 20

 $m\angle C = 5x = 100^{\circ}$

- 11. By Equiang. \triangle Thm., $\overline{RS} \cong \overline{RT} \cong \overline{ST}$ RS = RT 2w + 5 = 8 - 4w 6w = 3 w = 0.5ST = RS = 2(0.5) + 5 = 6
- 12. It is given that isosc. $\triangle JKL$ has coords. J(0, 0), K(2a, 2b), and L(4a, 0). M is mdpt. of \overline{JK} , and N is mdpt. of \overline{KL} . By Mdpt. Formula, coords. of M are $\left(\frac{0+2a}{2}, \frac{0+2b}{2}\right) = (a, b)$, and coords. of N are $\left(\frac{2a+4a}{2}, \frac{2b+0}{2}\right) = (3a, b)$. By Dist. Formula, $MK = \sqrt{(2a-a)^2+(2b-b)^2} = \sqrt{a^2+b^2}$, and $NK = \sqrt{(2a-3a)^2+(2b-b)^2} = \sqrt{a^2+b^2}$. Thus $\overline{MK} \cong \overline{NK}$. So $\triangle KMN$ is isosc. by def. of isosc. \triangle .

1-11,14,15, 22-30 STUDY GUIDE: REVIEW, PAGES 284-287

1. isosceles

2. corresponding angles

3. included side

LESSON 4-1

4. equiangular; equilat.

obtuse; scalene

LESSON 4-2

6. Think: Use Ext.
$$\angle$$
 Thm.
 $m\angle N + m\angle P = m(ext. \angle Q)$
 $y + y = 120$
 $y = 60$
 $m\angle N = y = 60^{\circ}$

7. Think: Use $\triangle \angle$ Sum Thm. $m\angle L + m\angle M + m\angle N = 180$ 8x + 2x + 1 + 6x - 1 = 180 16x = 180 x = 11.25 $m\angle N = 6x - 1 = 66.5^{\circ}$

LESSON 4-3

8.
$$\overline{PR} \cong \overline{XZ}$$

9. $\angle Y \cong \angle Q$
10. $m\angle CAD = m\angle ACB$
 $2x - 3 = 47$
 $2x = 50$
 $x = 25$
11. $CD = AB$
 $3y + 1 = 15 - 4y$
 $7y = 14$
 $y = 2$
 $CD = 3y + 1 = 7$

LESSON 4-4

12.	Statements	Reasons
	1. $\overline{AB} \cong \overline{DE}$, $\overline{DB} \cong \overline{AE}$	1. Given
	2. $\overline{DA} \cong \overline{AD}$	2. Reflex. Prop. of ≅
	$3. \triangle ADB \cong \triangle DAE$	3. SSS Steps 1, 2

13.	Statements	Reasons
	1. \overline{GJ} bisects \overline{FH} , and \overline{FH} bisects \overline{GJ} .	1. Given
	2. $\overline{GK} \cong \overline{JK}$, $\overline{FK} \cong \overline{HK}$	2. Def. of seg. bisector
	3. ∠GKF≅ ∠JKH	3. Vert. & Thm.
	$4. \triangle FGK \cong \triangle HJK$	4. SAS Steps 2. 3

14.
$$BC = x^2 + 36 = (-6)^2 + 36 = 72$$

 $YZ = 2x^2 = 2(-6)^2 = 72 = BC$
 $\overline{BC} \cong \overline{YZ}$; $\angle C \cong \angle Z$; $\overline{AC} \cong \overline{XZ}$. So $\triangle ABC \cong \triangle XYZ$
by SAS.

15.
$$PQ = y - 1 = 25 - 1 = 24$$

 $QR = y = 25$
 $PR = y^2 - (y - 1)^2 - 42 = (25)^2 - (24)^2 - 42 = 7$
 $\overline{LM} \cong \overline{PQ}$; $\overline{MN} \cong \overline{QR}$; $\overline{LN} \cong \overline{PR}$.
So $\triangle LMN \cong \triangle PQR$ by SSS.

LESSON 4-5

16.	Statements	Reasons
	1. C is mdpt. of \overline{AG} .	1. Given
	2. $\overline{GC} \cong \overline{AC}$	2. Def. of mdpt
	3. HA GB	3. Given
	4. ∠HAC ≅ ∠BGC	4. Alt. Int. & Thm.
	5. ∠HCA ≅ ∠BCG	5. Vert. & Thm.
	6. \triangle <i>HAC</i> \cong \triangle <i>BGC</i>	6. ASA Steps 4, 2, 5

17.	Statements	Reasons
	1. $\overline{WX} \perp \overline{XZ}$, $\overline{YZ} \perp \overline{ZX}$	1. Given
	2. ∠WXZ, ∠YZX are rt. ₺.	2. Def. of ⊥
	3. \triangle <i>WXZ</i> , \triangle <i>YZX</i> are rt. \triangle .	3. Def. of rt. △
	4. $\overline{XZ} \cong \overline{ZX}$	4. Reflex. Prop. of ≅
	5. $\overline{WZ} \cong \overline{YX}$	5. Given
	$6. \triangle WZX \cong \triangle YXZ$	6. HL Steps 5, 4

18.	Statements	Reasons
	1. ∠S, ∠V are rt. ₺.	1. Given
	$2. \angle S \cong \angle V$	2. Rt. ∠ ≅ Thm.
	3. $RT = UW$	3. Given
	4. $\overline{RT} \cong \overline{UW}$	4. Def. of ≅
	5. $m \angle T = m \angle W$	5. Given
	$6. \angle T \cong \angle W$	6. Def. of ≅
	7. $\triangle RST \cong \triangle UVW$	7. AAS Steps 2, 6, 4

LESSON 4-6

19.	Statements	Reasons
	1. M is mdpt. of \overline{BD} .	1. Given
	2. $\overline{MB} \cong \overline{DM}$	2. Def. of mdpt.
	3. $\overline{BC} \cong \overline{DC}$	3. Given
	4. $\overline{CM} \cong \overline{CM}$	4. Reflex. Prop. of ≅
	$5. \triangle CBM \cong \triangle CDM$	5. SSS Steps 2, 3, 4
	6. ∠1 ≅ ∠2	6. CPCTC

20.	Statements	Reasons
	1. $\overline{PQ} \cong \overline{RQ}$	1. Given
	$2. \overline{PS} \cong \overline{RS}$	2. Given
	3. $\overline{QS} \cong \overline{QS}$	3. Reflex. Prop. of ≅
	$4. \triangle PQS \cong \triangle RQS$	4. SSS Steps 1, 2, 3
	$5. \angle PQS \cong \angle RQS$	5. CPCTC
	6. QS bisects ∠PQR.	6. Def. of ∠ bisector

1.	Statements	Reasons
	1. H is mdpt. of \overline{GJ} , L is mdpt. of \overline{MK} .	1. Given
	2. $GH = JH$, $ML = KL$	2. Def. of mdpt.
	3. $\overline{GH} \cong \overline{JH}$, $\overline{ML} \cong \overline{KL}$	3. Def. of ≅
	4. $\overline{GJ} \cong \overline{KM}$	4. Given
	5. $\overline{GH} \cong \overline{KL}$	5. Div. Prop. of ≅
	6. $\overline{GM} \cong \overline{KJ}$, $\angle G \cong \angle K$	6. Given
	7. \triangle GMH $\cong \triangle$ KJL	7. ASA Steps 5, 6
	8. $\angle GMH \cong \angle KJL$	8. CPCTC

22. Check students' drawings; e.g., (0, 0), (*r*, 0), (0, *s*)

23. Check students' drawings; e.g., (0, 0), (2p, 0), (2p, p), (0, p)

24. Check students' drawings; e.g., (0, 0), (8m, 0), (8m, 8m), (0, 8m)

LESSON 4-7

- **25.** Use coords. A(0, 0), B(2a, 0), C(2a, 2b), and D(0, 2b). Then by Mdpt. Formula, the mdpt. coords are E(a, 0), F(2a, b), G(a, 2b), and H(0, b). By Dist. Formula, $EF = \sqrt{(2a a)^2 + (b 0)^2} = \sqrt{a^2 + b^2}$, and $GH = \sqrt{(0 a)^2 + (b 2b)^2} = \sqrt{a^2 + b^2}$. So $\overline{EF} \cong \overline{GH}$ by def. of \cong .
- 26. Use coords. P(0, 2b), Q(0, 0), and R(2a, 0). By Mdpt. Formula, mdpt. coords are M(a, b). By Dist. Formula, $QM = \sqrt{(a-0)^2 + (b-0)^2} = \sqrt{a^2 + b^2}$, $PM = \sqrt{(a-0)^2 + (b-2b)^2} = \sqrt{a^2 + b^2}$, and $RM = \sqrt{(2a-a)^2 + (0-b)^2} = \sqrt{a^2 + b^2}$. So QM = PM = RM. By def., M is equidistant from vertices of $\triangle PQR$.
- 27. In a rt. \triangle , $a^2 + b^2 = c^2$. $\sqrt{(3-3)^2 + (5-2)^2} = 3,$ $\sqrt{(3-2)^2 + (2-5)^2} = \sqrt{10},$ $\sqrt{(2-3)^2 + (5-5)^2} = 1, \text{ and } 3^2 + 1^2 = (\sqrt{10})^2.$ Since 9 + 1 = 10, it is a rt. \triangle .

LESSON 4-8

28. Think: Use Equilat. \triangle Thm. and \triangle \angle Sum Thm. $m\angle K = m\angle L = m\angle M$ $m\angle K + m\angle L + m\angle M = 180$ $3m\angle M = 180$ 3(45 - 3x) = 180

$$\begin{array}{c}
-45 = 9x \\
x = -5
\end{array}$$

29. Think: Use Conv. of Isosc. \triangle Thm. $\overline{RS}\cong \overline{RT}$ RS=RT 1.5y=2y-4.5 4.5=0.5y y=9 RS=1.5y=13.5

30.
$$\overline{AB} \cong \overline{BC}$$

 $AB = BC$
 $x + 5 = 2x - 3$
 $8 = x$
Perimeter = $AC + CD + AD$
 $= 2AB + CD + CD$
 $= 2(x + 5) + 2(2x + 6)$
 $= 6x + 22$
 $= 6(8) + 22 = 70$ units

CHAPTER TEST, PAGE 288 # 1-9,14-1

- **1.** Rt. △
- 2. scalene \triangle (AC = 4 by Pythag, Thm)
- 3. isosc. \triangle (AC = BC = 4)
- **4.** scalene \triangle (BD = 4 + 3 = 7)
- 5. $m\angle RTP = 2m\angle RTS$ $m\angle RTP + m\angle RTS = 180$ $3m\angle RTS = 180$ $m\angle RTS = 60^{\circ}$ $m\angle RTS + m\angle R + m\angle S = 180$ $60 + m\angle R + 43 = 180$ $m\angle R = 77^{\circ}$
- 6. $\overline{JL} \cong \overline{XZ}$
- $7.2Y \cong 2K$
- 8. ∠L ≅ ∠Z
- 9. YZ ≅ KL

10.	Statements	Reasons
	1. T is mdpt. of \overline{PR} and \overline{SQ} .	1. Given
	2. $\overline{PT} \cong \overline{RT}$, $\overline{ST} \cong \overline{QT}$	2. Def. of mdpt.
	3. ∠PTS ≅ ∠RTQ	3. Vert. & Thm.
	$4. \triangle PTS \cong \triangle RTQ$	4. SAS Steps 2, 3

11.	Statements	Reasons
	1. ∠ <i>H</i> ≅ ∠ <i>K</i>	1. Given
	2. GJ bisects ∠HGK.	2. Given
	3. ∠HGJ ≅ ∠KGJ	3. Def. of ∠ bisector
	$4. \overline{JG} \cong \overline{JG}$	4. Reflex. Prop. of ≅
	$5. \triangle HGJ \cong \triangle KGJ$	5. AAS Steps 1, 3, 4

12.	Statements	Reasons
	1. $\overline{AB} \perp \overline{AC}$, $\overline{DC} \perp \overline{DB}$	1. Given
	2. ∠BAC, ∠CDB are rt. ₺.	2. Def. of ⊥
	3. △ABC and △DCB are rt. ▲.	3. Def. of rt. △
	$4. \overline{AB} \cong \overline{DC}$	4. Given
	5. $\overline{BC} \cong \overline{CB}$	5. Reflex. Prop. of ≅
	6. $\triangle ABC \cong \triangle DCB$	6. HL Steps 5, 4

13.	Statements	Reasons
	1. PQ SR	1. Given
	2. ∠QPR ≅ ∠SRP	2. Alt. Int. & Thm.
	3. ∠S ≅ ∠Q	3. Given
	4. $\overline{PR} \cong \overline{RP}$	4. Reflex. Prop. of ≅
	5. \triangle QPR \cong \triangle SRP	5. AAS Steps 2, 3, 4
	6. ∠SPR ≅ ∠QRP	6. CPCTC
	7. PS QR	7. Conv. of Alt. Int. 🛦 Thm.

- 14. y (0, 3m) (4m, 0)
- **15.** Use coords. *A*(0, 0), *B*(*a*, 0), *C*(*a*, *a*), and *D*(0, *a*). By Dist. Formula,

$$AC = \sqrt{(a-0)^2 + (a-0)^2} = a\sqrt{2}$$
, and $BD = \sqrt{(0-a)^2 + (a-0)^2} = a\sqrt{2}$. Since $AC = BD$, $\overline{AC} \cong \overline{BD}$ by def. of \cong .

16. Think: By Equilat. \triangle Thm., $m \angle F = m \angle G = m \angle H$. $3m \angle G = 180$

$$3(5 - 11y) = 180$$

$$5 - 11y = 60$$

$$- 11y = 55$$

$$y = -5$$

17. Think: Use $\triangle \angle$ Sum and Isosc. \triangle Thms.

$$m\angle P + m\angle Q + m\angle PRQ = 180$$

 $2(56) + m\angle PRQ = 180$
 $m\angle PRQ = 68^{\circ}$

By Vert. \angle and Isosc. \triangle Thms., $m\angle T = m\angle SRT = m\angle PRQ = 68^{\circ}$. Using \triangle \angle Sum and Isosc. Thms. $m\angle S + m\angle T + m\angle SRT = 180$ $m\angle S + 2(68) = 180$ $m\angle S = 44^{\circ}$

18. It is given that $\triangle ABC$ is isosc. with coords. A(2a, 0), B(0, 2b), and C(-2a, 0). D is mdpt. of \overline{AC} , and E is mdpt. pf \overline{AB} . By Mdpt. Formula, coords. of D are $\left(\frac{-2a+2a}{2}, 0\right) = (0, 0)$, and coords. of E are

$$\left(\frac{2a+0}{2}, \frac{0+2b}{2}\right) = (a, b)$$
. By Dist. Formula,
 $AE = \sqrt{(a-2a)^2 + (b-0)^2} = \sqrt{a^2 + b^2}$, and

 $AE = \sqrt{(a-2a)^2 + (b-0)^2} = \sqrt{a^2 + b^2}$, and $DE = \sqrt{(a-0)^2 + (b-0)^2} = \sqrt{a^2 + b^2}$.

Therefore, $\overline{AE} \cong \overline{DE}$ and $\triangle AED$ is isosc.