



43. $m\angle ABC = m\angle ABD + m\angle DBC$ = 180 - (30 + 110) + 50 = 90°

 $\angle ABC$ is a rt. \angle , so $\triangle ABC$ is a rt. \triangle .

44. $\angle PSQ$ and $\angle PQS$ are comp. By the Converse of the \angle Bisector Theorem, \overrightarrow{QS} is the bisector of $\angle PQR$. So $\mathbb{M} \angle PQR = 2m\angle PQS$

 $= 2(90 - m \angle PSQ)$ = 2(90 - 65) = 50°.

45. $\angle QTV$ and $\angle VTS$ are supp., and $\angle TQV$ and $\angle QTV$ are comp. By the Converse of the \angle Bisector

Theorem, \overrightarrow{QS} is the bisector of $\angle PQR$. So

 $m \angle VTS = 180 - m \angle QTV$ = $180 - (90 - m \angle TQV)$ = $180 - (90 - m \angle PQS)$ = $180 - (90 - 42) = 132^{\circ}$.

46. By the \angle Bisector Theorem, PS = SR and TU = TV. Substitute in the given equation.

SR = 3TU

PS = 3TV

7.5 = 3TV

TV = 2.5

READY TO GO ON? PAGE 365

1. Possible answer:

Given: $\angle A$ and $\angle B$ are supplementary. $\angle A$ is an acute angle.

Prove: $\angle B$ cannot be an acute angle. Proof: Assume that $\angle B$ is an acute angle. By the def. of acute, $m\angle A < 90^\circ$ and $m\angle B < 90^\circ$. When the 2 inequalities are added. $m\angle A + m\angle B < 180^\circ$. However, by the def. of supp., $m\angle A + m\angle B = 180^\circ$. So $m\angle A + m\angle B < 180^\circ$ contradicts the given information, and the assumption that $\angle B$ is an acute \angle is false. Therefore $\angle B$ cannot be acute.

- 2. \overline{KM} is the shortest side, so $\angle L$ is the least \angle . \overline{KL} is the longest side, so $\angle M$ is the greatest \angle . From smallest to greatest, the order is $\angle L$, $\angle K$, $\angle M$.
- 3. $m\angle D = 90 48 = 42^{\circ}$, $m\angle E = 90^{\circ}$ $\angle D$ is the least \angle , so \overline{EF} is the shortest side. $\angle E$ is the greatest \angle , so \overline{DF} is the longest side. From shortest to longest, the order is \overline{EF} , \overline{DE} , \overline{DF} .
- 4. No; possible answer: the sum of 8.3 and 10.5 is 18.8, which is not greater than 18.8. By the △ Inequality Thm., a △ cannot have these side lengths.
- **5.** Yes; possible answer: when s = 4, the value of 4s is 16, the value of s + 10 is 14, and the value of s^2 is 16. The sum of each pair of 2 lengths is greater than the third length. So a \triangle can have sides with these lengths.
- **6.** Let *d* be the distance from the theater to the zoo.

d + 9 > 16 9 + 16 > dd > 16 - 9 = 7 25 > d

Range of the distances: greater than 7 km and less than 25 km.

- 7. $\overline{PQ} \cong \overline{ST}$, $\overline{QR} \cong \overline{TV}$, and $m \angle Q > m \angle T$. By the Hinge Theorem, PR > SV.
- **8.** $\overline{JK} \cong \overline{JM}$, $\overline{JL} \cong \overline{JL}$, and KL < ML. By the Converse of the Hinge Theorem, $m \angle KJL < m \angle MJL$.
- **9.** $\overline{AD} \cong \overline{BC}$, $\overline{BD} \cong \overline{BD}$, and $m \angle ADB < m \angle DBC$. By the Hinge Theorem,

AB < CD 4x - 13 < 15 4x < 28

4x - 13 > 0 4x > 13x > 3.25

AB > 0

3.25 < x < 7

x < 7

10. $x^2 = 5^2 + 9^2$ $x^2 = 106$

 $x = \sqrt{106}$

11. $a^2 + 9^2 = 11^2$ $a^2 + 81 = 121$ $a^2 = 40$

a = 40 $a = \sqrt{40} = 2\sqrt{10}$

The side lengths do not form a Pythagorean triple, because $2\sqrt{10}$ is not a whole number.

12. 10 + 12 = 22 > 16 \checkmark

The side lengths can form a \triangle .

 $16^2 \stackrel{?}{=} 10^2 + 12^2$

 $256 \stackrel{?}{=} 100 + 144$

256 > 244

The \triangle is obtuse.

- 13. Length of the walkway = $\sqrt{50^2 + 80^2}$ = $\sqrt{8900} \approx 94$ ft 4 in.
- **14.** Length of the shorter leg of a 30°-60°-90° \triangle is $36 \div 2 = 18$ in. So $h = 18\sqrt{3} \approx 31$ in.

15. $x = 8\sqrt{2}$

16. $22 = x\sqrt{2}$ $22\sqrt{2} = 2x$ $11\sqrt{2} = x$

17. $5\sqrt{3} = x\sqrt{3}$ 5 = x y = 2x= 2(5) = 10

STUDY GUIDE: REVIEW, PAGES 366-369

- 1. equidistant
- 2. midsegment
- 3. incenter
- 4. locus

LESSON 5-1

5.
$$BD = 2CD = 2(3.7) = 7.4$$

$$6. XY = YZ$$

$$3n + 5 = 8n - 9$$

 $14 = 5n$

$$n = 2.8$$

$$YZ = 8(2.8) - 9 = 13.4$$

7.
$$HT = FT = 5.8$$

8.
$$m \angle MNV = m \angle PNV$$

$$2z + 10 = 4z - 6$$

$$16 = 2z$$

$$z = 8$$

$$m \angle MNP = 2m \angle MNV$$

$$= 2[2(8^\circ) + 10^\circ] = 52^\circ$$

- **9.** The midpoint of \overline{AB} is (1, 0); slope of $\overline{AB} = \frac{-10}{10} = -1$, so the slope of the perpendicular bisector is 1; the equation of the perpendicular bisector is y = x - 1.
- **10.** The midpoint of \overline{XY} is (4, 6); slope of $\overline{XY} = \frac{8}{2} = 4$, so the slope of the perpendicular bisector is -0.25; the equation of the perpendicular bisector is y - 6 = -0.25(x - 4).
- 11. No; to apply the Converse of the Angle Bisector Theorem, you need to know that $\overline{AP} \perp \overline{AB}$ and $\overline{CP} \perp \overline{CB}$.
- 12. Yes; since $\overline{AP} \perp \overline{AB}$, $\overline{CP} \perp \overline{CB}$, and $\overline{AP} \cong \overline{CP}$, P is on the bisector of $\angle ABC$ by the Converse of the Angle Bisector Theorem.

LESSON 5-2

- **13.** GY = HY = 42.2
- **14.** GP = JP = 46
- **15.** GJ = 2GX= 2(28.8) = 57.6
- **16.** PH = JP = 46
- 17. distance from A to \overline{UV} = distance from A to \overline{UW}
- **18.** $m \angle WVU + m \angle VUW + m \angle UWV = 180$ $2m\angle WVA + 2(20) + 66 = 180$ $2m \angle WVA = 74$ $m \angle WVA = 37^{\circ}$
- 19. \overline{MO} is vertical, so the equation of the horizontal perpendicular bisector is y = 3; NO is horizontal, so the equation of the vertical perpendicular bisector is x = 4. The circumcenter is at (4, 3).
- **20.** \overline{OR} is vertical, so the equation of the horizontal perpendicular bisector is y = -3.5; \overline{OS} is horizontal, so the equation of the vertical perpendicular bisector is x = -6. The circumcenter is at (-6, -3.5).

LESSON 5-3

- **21.** $DZ = \frac{2}{3}DB$ **22.** DB = 3ZB 24.6 = 3ZB 2B = 8.2
- **23.** EZ = 2ZC11.6 = 2ZCZC = 5.8
- **24.** EC = 3ZC = 3(5.8) = 17.4
- **25.** \overline{JK} is vertical, so the equation of the altitude from L is y = 0;

 $\overline{\mathit{KL}}$ is horizontal, so the equation of the altitude from J is x = -6.

The orthocenter is at (-6, 0).

26. \overline{AB} is horizontal, so the equation of the altitude from C is x = 1:

AC is vertical, so the equation of the altitude from B is v = 2.

The orthocenter is at (1, 2).

27. \overline{RT} is horizontal, so the equation of the altitude from S is x = 7;

 \overline{RS} has slope $\frac{5}{5} = 1$, so the equation of the altitude from *T* is y - 3 = -(x - 8). At the orthocenter, x = 7 and y - 3 = -(7 - 8) = 1

 \rightarrow y = 4, so the orthocenter is at (7, 4).

28. \overline{XY} is horizontal, so the equation of the altitude from Z is x = 3;

 \overline{XZ} has slope $\frac{6}{-6} = -1$, so the equation of the altitude from Y is y - 2 = x - 5 or y = x - 3.

At the orthocenter, x = 3 and y = x - 3 = 0, so the orthocenter is at (3, 0).

29.
$$G = \left(\frac{1}{3}(0+3+6), \frac{1}{3}(4+8+0)\right) = (3,4)$$

LESSON 5-4

- **30.** $BC = \frac{1}{2}XY$ **31.** XZ = 2AB = 2(32.4) = 64.8
- **32.** $XC = \frac{1}{2}XZ$ **33.** $m \angle BCZ = m \angle ABC = 42^{\circ}$ $= \bar{A}B = 32.4$
- 34. $m\angle BAX = 180^{\circ} m\angle ABC$ $= 180^{\circ} - 42^{\circ} = 138^{\circ}$
- **35.** $m \angle YXZ = m \angle BCZ = 42^{\circ}$
- **36.** V = (-1, -1); W = (6, 1); slope of $\overline{VW} = \frac{2}{7}$; slope of $\overline{GJ} = \frac{4}{14} = \frac{2}{7}$; since the slopes are the same. $\overline{VW} \parallel \overline{GJ}$. $VW = \sqrt{2^2 + 7^2} = \sqrt{53};$ $GJ = \sqrt{4^2 + 14^2} = 2\sqrt{53}$, so $VW = \frac{1}{2}GJ$.

LESSON 5-5

- **37.** $\angle A$ is the smallest \angle , so \overline{BC} is the shortest side; $\angle C$ is the largest \angle , so \overline{AB} is the longest side; From shortest to longest, the order is \overline{BC} , \overline{AC} , \overline{AB} .
- **38.** \overline{GH} is the shortest side, so $\angle F$ is the smallest \angle ; \overline{FH} is the longest side, so $\angle G$ is the largest \angle ; From smallest to largest, the order is $\angle F$, $\angle H$, $\angle G$.
- **39.** x + 4.5 > 13.54.5 + 13.5 > xx > 918 > xRange of the values: > 9 cm and < 18 cm
- **40.** $6.2 + 8.1 \stackrel{?}{=} 14.2$ 14.3 > 14.2

Yes; possible answer: the sum of each pair of 2 lengths is greater than the third length.

41. $z + z \stackrel{?}{>} 3z$ $2z \gg 3z$

> No: possible answer: when z = 5, the value of 3zis 15. So the 3 lengths are 5, 5, and 15. the sum of 5 and 5 is 10, which is not greater than 15. By the △ Inequality Thm., a △ cannot have these side lengths.