Name: Key	Date: $+ C \rightarrow k = C + 273$ Period:
1 atm = 760.0 mm Hg	Worksheet: $ 2 .082 $ (atm) $ 2 = 8.314 $ (kpa) $ 2 = 8.314 $ (kpa) $ 2 = -1000 $
Boyle's 1. If 22.5 L of nitrogen at 748 mm Hg are compressed $P_1V_1 = P_2V_2$ $\frac{(748 \text{ mm Hg})(22.5 \text{ L})}{725 \text{ mm Hg}}$	to 725 mm Hg. What is the new volume? $(725 \text{ mm Hg}) V_2 = 23.2 \text{ L}$ 125 mm Hg
Byle's 2. What pressure is required to compress 196.0 L of at $P_1V_1 = P_2V_2$ $(1.02 + m)(196.0 \text{ K}) = P_2$	r at 1.00 atm into a cylinder whose volume is 26.0 liters? $\frac{(26.0 L)}{26.0 L} \qquad P_2 = 7.54 \text{ atm}$
Boyle's 3. A gas with a volume of 4.0L at a pressure of 205kP pressure in the container if the temperature remains $P_1V_1 = P_2V_2$ (205 kpa) (4.0L) = P	a is allowed to expand to a volume of 12.0L. What is the constant? $P_2 = 68 \text{ Kpg}$
Charles Calculate the decrease in temperature when 6.00 L $V_1T_2 = V_2T_1$ (6.00 L) (T ₂) = (4.0 L)	at 20.0 °C is compressed to 4.00 L. $\frac{0\cancel{k}}{6.00\cancel{k}} \qquad T_2 = 195\cancel{k}$ $\frac{195\cancel{k}}{6.00\cancel{k}} \qquad T_2 = 195\cancel{k}$
Simble 15. If 10.0 liters of oxygen at STP are heated to 512 °C, what will be the new volume of gas if the pressure is also increased to 1520.0 mm of mercury? $ STP $ $P_1V_1T_2 = P_2V_2T_1$ $ STP = (1520.0 \text{ mm Hg})(V_2)(V_2)(V_2)(V_2)(V_2)(V_2)(V_2)(V_2$	
Charles 6. If 15.0 liters of neon at 25.0 °C is allowed to expansion maintain constant pressure? $V_1T_2 = V_2T_1$ $(V_2) = (4)$	d to 45.0 liters, what must the new temperature be to
(mbined). A gas balloon has a volume of 106.0 liters when the temperature is 45.0 °C and the pressure is 740.0 mm of mercury. What will its volume be at 20.0 °C and 780.0 mm of mercury pressure? PIVIT2 = P2V2T: (740.0 points) (106.0 L)(29312) = (780.0 points) (318 K) V2 = 92.7 L (780 points) (318 K)	
8. How many moles of gas would you have if the pressure in the vessel was 450 torr at 45°C and you had a volume of 980 mL? = .980 L PV=nRT (.592 atm) (.980 k) = n (.082) (.atm) (318 k) (.082) (.082) (.082) (.082) (.082) (.082) (.082) (.082) (.082) (.082) (.082) (.082) (.082) (.082) (.082) (.082) (.082) (.082) (.082) (.082) (.082) (.082) (.082) (.082) (.082) (.082) (.082) (.082) (.082) (.082) (.082) (.082) (.082) (.082) (.082) (.08	
Ideal 9. What would the density of a gas be if its molar mass we sub of the property of a gas be if its molar mass we sub of the property of a gas be if its molar mass of the property of the	was 159.8 g/mol and it was at a pressure of 99.6 kPa and $\frac{(159.8 \text{ J/mol})(99.6 \text{ kpa})}{(8.314 \text{ L·k-pa})(273 \text{ kc})} \cdot d = 7.0 9/L$
Combine 0. What would the initial temperature be if the pressure was 56°C, and the volume decreased from 4.5 L to 2.5 P ₁ N ₁ T ₂ = P ₂ V ₂ T ₁ (1.3 atm) (4.5 ½) (2.1 atm) (2.5)	re increased from 1.3 to 2.1 atm, the final temperature L ? $\frac{(329 \text{ K})}{(2.1 \text{ atm})} = \frac{(2.1 \text{ atm})(2.5 \text{ L})}{(2.1 \text{ atm})} = \frac{(2.5 \text{ L})}{(2.5 \text{ L})} = \frac{(2.1 \text{ atm})(2.5 \text{ L})}{(2.1 \text{ atm})(2.5 \text{ L})} = \frac{(2.1 \text{ atm})(2.5 \text{ L})}{(2.1 \text{ atm})(2.5 \text{ L})} = \frac{(2.1 \text{ atm})(2.5 \text{ L})}{(2.1 \text{ atm})(2.5 \text{ L})} = \frac{(2.1 \text{ atm})(2.5 \text{ L})}{(2.1 \text{ atm})(2.5 \text{ L})} = \frac{(2.1 \text{ atm})(2.5 \text{ L})}{(2.1 \text{ atm})(2.5 \text{ L})} = \frac{(2.1 \text{ atm})(2.5 \text{ L})}{(2.1 \text{ atm})(2.5 \text{ L})} = \frac{(2.1 \text{ atm})(2.5 \text{ L})}{(2.1 \text{ atm})(2.5 \text{ L})} = \frac{(2.1 \text{ atm})(2.5 \text{ L})}{(2.1 \text{ atm})(2.5 \text{ L})} = \frac{(2.1 \text{ atm})(2.5 \text{ L})}{(2.1 \text{ atm})(2.5 \text{ L})} = \frac{(2.1 \text{ atm})(2.5 \text{ L})}{(2.1 \text{ atm})(2.5 \text{ L})} = \frac{(2.1 \text{ atm})(2.5 \text{ L})}{(2.1 \text{ atm})(2.5 \text{ L})} = \frac{(2.1 \text{ atm})(2.5 \text{ L})}{(2.1 \text{ atm})(2.5 \text{ L})} = \frac{(2.1 \text{ atm})(2.5 \text{ L})}{(2.1 \text{ atm})(2.5 \text{ L})} = \frac{(2.1 \text{ atm})(2.5 \text{ L})}{(2.1 \text{ atm})(2.5 \text{ L})} = \frac{(2.1 \text{ atm})(2.5 \text{ L})}{(2.1 \text{ atm})(2.5 \text{ L})} = \frac{(2.1 \text{ atm})(2.5 \text{ L})}{(2.1 \text{ atm})(2.5 \text{ L})} = \frac{(2.1 \text{ atm})(2.5 \text{ L})}{(2.1 \text{ atm})(2.5 \text{ L})} = \frac{(2.1 \text{ atm})(2.5 \text{ L})}{(2.1 \text{ atm})(2.5 \text{ L})} = \frac{(2.1 \text{ atm})(2.5 \text{ L})}{(2.1 \text{ atm})(2.5 \text{ L})} = \frac{(2.1 \text{ atm})(2.5 \text{ L})}{(2.1 \text{ atm})(2.5 \text{ L})} = \frac{(2.1 \text{ atm})(2.5 \text{ L})}{(2.1 \text{ atm})(2.5 \text{ L})} = \frac{(2.1 \text{ atm})(2.5 \text{ L})}{(2.1 \text{ atm})(2.5 \text{ L})} = \frac{(2.1 \text{ atm})(2.5 \text{ L})}{(2.1 \text{ atm})(2.5 \text{ L})} = \frac{(2.1 \text{ atm})(2.5 \text{ L})}{(2.1 \text{ atm})(2.5 \text{ L})} = \frac{(2.1 \text{ atm})(2.5 \text{ L})}{(2.1 \text{ atm})(2.5 \text{ L})} = \frac{(2.1 \text{ atm})(2.5 \text{ L})}{(2.1 \text{ atm})(2.5 \text{ L})} = \frac{(2.1 \text{ atm})(2.5 \text{ L})}{(2.1 \text{ atm})(2.5 \text{ L})} = \frac{(2.1 \text{ atm})(2.5 $